

Module 1

Introduction
o OO Overview.
o Why use UML to represent OO concepts?
o Quick history & basics of UML.
o Inheritance and Information hiding.
o Java service concepts.
o OO tools overview.
o Round trip engineering
o Code generation.

Abstract Data types (ADT)

o Handling the changing software development.
o Defining basic operations on a type.
o Abstract data type definition.
o Delaying implementation decisions.
o Exercise: creating an ADT using Java.

Information Hiding
o Knowing how to use the abstract data type.
o Hiding the implementation of the ADT.
o Keeping things simple for the user.
o Not relying on implementation details.
o Extending an ADT’s interface.

The Object Oriented View
o Sending a message to an object.
o Determining which method will be used.
o Objects sending messages to each other.
o Object collaboration details.
o Design by contract.
o Designing clean interfaces.

Invoking Methods
o Different ways for method invocation.
o Operations and messages.
o Operation contracts.
o Pre-and post conditions.
o Exercise: creating an operation contract.
o The 5 categories for an operation contract.

Modular Design and reuse
o Creating service packages.
o Conceptual classes.
o Elaborating subsystems from class diagrams.
o The architectural view.
o Exercise: creating multiple service packages.
o The layers pattern.

Subsystems and Components
o Adding organization to class diagrams.
o The coupling between packages
o Avoiding multiple dependencies.
o Grouping criteria.
o The singleton pattern.
o Using deployment diagrams.
o Exercise: mapping components to nodes.
o

Composition and Aggregation
o When to use composition.
o Using composition or inheritance?
o Aggregation versus composition.
o Exercise: modeling using composition.

Module 2

Constructor Functions
o What is a constructor?
o Defining constructors for classes.
o Allocating space for an object.
o Initializing the class.
o Constructors that take no arguments.

Interfaces
o Interfaces.
o When to use interfaces?
o Why are interfaces so important?
o Extending an interface.
o Implementing an interface.
o Exercise: making an interface using Java.

Inheritance
o Software reusability.
o Abstract classes.
o Inheriting class members.
o Derived classes or subclasses.
o The Liskov substitution principle.
o Complete and incomplete classes.

Derived Classes

o Inherited members.
o Converting instances.
o Checking casts.
o Inheritance hierarchy.
o Descendants.
o Ancestors.
o Redefining members.

Shadowing versus Overriding
o Redefining inherited data members.
o Shadowing explained.
o Member visibility.
o Subclass compatibility.
o Compatibility in meaning and behavior.
o Exercise: shadowing and overriding examples.

Polymorphism
o Overriding of member functions.
o Examples based on graphical objects.
o Defining different method behavior.
o Exercise: polymorphism using Java.

Overloading
o Determining the method.
o Determining the return type.
o Built-in overloading for arithmetic operators.
o Overloading used in a Java.

Case Study
o A full-blown example using OO concepts.
o UML diagrams to show OO principles.
o Defining conceptual classes.
o Some GOF patterns.
o State, Singleton, Adapter pattern.
o Going towards a design class diagram
o Creating the final example code.
o The future of Object Oriented languages.

Object Oriented Programming with Java
detailed 2-day course contents

